skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Powell, Jackson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Thermal performance curves (TPCs) are important tools for predicting the sensitivity of populations to climate change. However, the interactive ways that temperature affects multiple life‐history components lead to different fitness outcomes. These interactions are poorly understood for modular animals, especially over the lifespan of individual colonies, which limits our capacity to connect physiological and demographic responses.The goal of this study was to assess and compare the relationships between temperature and different life‐history components in a modular animal to reveal the mechanisms underlying TPCs for fitness.We reared replicated clones of the marine bryozoanBugula neritinaacross a thermal gradient (16 values) ranging from 23 to 32°C, which reflected the upper thermal range of seasonal variation in the field. TPCs were constructed for survival (measured as zooids states within a colony), growth rate, development to reproductive maturity and reproductive capacity, which were measured over much of the realized lifespan expected under field conditions (~30 days).The effect of temperature was more acute on zooid states rather than whole‐colony survival, and increased temperature increased the frequency of polypide regression. Most colonies reached reproductive maturity up to ~30°C, but growth rate and reproduction decreased at temperatures beyond ~25°C. The decline in reproductive capacity over temperatures above ~25°C was then due to the decline in the production of zooids capable of brooding embryos and zooids transitioning to regressed states up until about 30°C and transitioning to dead state beyond that.Higher temperatures are often considered to affect reproduction by interfering with gametogenesis and post‐zygotic pathways, but in modular animals, changes in growth rate and module states could indirectly cause temperature sensitivity of reproduction. Our study has implications for the role of temperature in driving the sampled population's dynamics by setting the number of generations that occur during the time window when temperatures are conducive to reproduction. Our results also have implications for the generality and predictability of temperature on population persistence across unitary and modular animals. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
    Free, publicly-accessible full text available April 27, 2026
  2. ABSTRACT Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms. 
    more » « less
  3. Technology advances and lower equipment costs are enabling non-invasive, convenient recording of brain data outside of clinical settings in more real-world environments, and by non-experts. Despite the growing interest in and availability of brain signal datasets, most analytical tools are made for experts in the specific device technology, and have rigid constraints on the type of analysis available. We developed BrainEx to support interactive exploration and discovery within brain signals datasets. BrainEx takes advantage of algorithms that enable fast exploration of complex, large collections of time series data, while being easy to use and learn. This system enables researchers to perform similarity search, explore feature data and natural clustering, and select sequences of interest for future searches and exploration, while also maintaining the usability of a visual tool. In addition to describing the distributed architecture and visual design for BrainEx, this paper reports on a benchmark experiment showing that it outperforms other existing systems for similarity search. Additionally, we report on a preliminary user study in which domain experts used the visual exploration interface and affirmed that it meets the requirements. Finally, it presents a case study using BrainEx to explore real-world, domain-relevant data. 
    more » « less
  4. Abstract Dispersal has far‐reaching implications for individuals, populations, and communities, especially in sessile organisms. Escaping competition with conspecifics and with kin are theorized to be key factors leading to dispersal as an adaptation. However, manipulative approaches in systems in which adults are sessile but offspring have behaviors is required for a more complete understanding of how competition affects dispersal. Here, we integrate a series of experiments to study how dispersal affects the density and relatedness of neighbors, and how the density and relatedness of neighbors in turn affects fitness. In a marine bryozoan, we empirically estimated dispersal kernels and found that most larvae settled within ~1 m of the maternal colony, although some could potentially travel at least 10s of meters. Larvae neither actively preferred or avoided conspecifics or kin at settlement. We experimentally determined the effects of spreading sibling larvae by manipulating the density and relatedness of settlers and measuring components of fitness in the field. We found that settler density reduced maternal fitness when settler neighbors were siblings compared with when neighbors were unrelated or absent. Genetic markers also identified very few half sibs (and no full sibs) in adults from the natural population, and rarely close enough to directly interact. In this system, dispersal occurs over short distances (meters) yet, in contrast with expectations, there appears to be limited kinship between adult neighbors. Our results suggest that the limited dispersal increases early offspring mortality when siblings settle next to each other, rather than next to unrelated conspecifics, potentially reducing kinship in adult populations. High offspring production and multiple paternity could further dilute kinship at settlement and reduce selection for dispersal beyond the scale of 10s of meters. 
    more » « less